Publications by Research Themes

Computational Communication as an Emerging Research Paradigm

  1. Peng, T. Q., & Zhu, J. J. H. (2025). Unpacking time in online behaviors: A temporal framework for computational social science. In: T. Yasseri (Ed.), Handbook of Computational Social Science. Edward Elgar Publishing Ltd.
  2. Chen, C. Y., Christoffels, A., Dube, R., Enos, K., Gilbert, J. E., Koyeji, S., Leigh, J., Liquido, C., McKee, A., Noe, K., Peng, T.-Q., & Taiuru, K. (2024). Increasing the presence of BIPOC researchers in computational science. Nature Computational Science, 4(9), 646–653.
  3. Zhang, L, Peng, T. Q., Wang, C. J., Liang, H., & Zhu, J. J. H. (2021). A Natural Course from Marginality to Centrality: What we learned from the development of computational communication research in China. In Francis L. F. Lee, Yu Huang (Eds), Inherit and Inspire: The Past, Present and Future of Chinese Communication Studies (pp. 399-419). Hong Kong: Chinese University of Hong Kong Press. [in Chinese]
  4. Lee, S. U., & Peng, T. Q. (2021). Big Data, Analysis of. In Jan Van den Bulck (Ed), The International Encyclopedia of Media Psychology, Wiley-Blackwell.
  5. Peng, T. Q., Liang, H., & Zhu, J. J. H. (Eds.) (2019). Special Issue on Introducing Computational Social Science for Asia-Pacific Communication Research. Asian Journal of Communication, 29(3).
  6. Peng, T. Q., Liang H., & Zhu, J. J. H. (2019). Introducing Computational Social Science for Asia-Pacific Communication Research. Asian Journal of Communication, 29(3), 205-216.
  7. Hilbert, M., Barnett, G., Blumenstock, J., Contractor, N., Diesner, J., Frey, S., González-Bailón, S., Lamberson, P. J., Pan, J., Peng, T. Q., Shen, C. H., Smaldino, P. E., van Atteveldt, W., Waldherr, A., Zhang, J. W., & Zhu, J. J. H. (2019). Computational communication science: A methodological catalyzer for a maturing discipline. International Journal of Communication, 13, 3912-3934.
  8. Van Atteveldt, W., & Peng, T. Q. (Eds.) (2018). Special Issue on Computational Methods for Communication Science. Communication Methods and Measures, 12(2-3).
  9. Van Atteveldt, W., & Peng, T. Q. (2018). When communication meets computation: Opportunities, challenges, and pitfalls in computational communication science. Communication Methods and Measures, 12(2-3), 81-92.
  10. Zhu, J. J. H., Peng, T. Q., Liang, H., Wang, C. J., Qin, J., & Chen, H. X. (2014). Computational social science in communication research. e-Science Technology & Application, 5(2), 3-13. [in Chinese]

Public Agenda Dynamics

  1. Yang, K., Li, H., Wen, H., Peng, T.-Q., Tang, J., & Liu, H. (2024). Are Large Language Models (LLMs) Good Social Predictors? In Y. Al-Onaizan, M. Bansal, & Y.-N. Chen (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2024 (pp. 2718–2730). Association for Computational Linguistics.
  2. Lee, S., Peng, T. Q., Goldberg, M., Rosenthal, S., Kotcher, J., Maibach, E., & Leiserowitz, A. (2024). Can large language models capture public opinion about global warming? An empirical assessment of algorithmic fidelity and bias. PLOS Climate.
  3. Peng, T. Q., & Zhu, J. J. H. (2022). Competition, cooperation, and coexistence: An ecological approach to public agenda dynamics in the United States (1958-2020). Communication Research.
  4. Peng, T. Q., Sun, G. D., & Wu, Y. C. (2017). Interplay between public attention and public emotion toward multiple social issues on Twitter. PLoS ONE, 12, e0167896.
  5. Qin, J., & Peng, T. Q. (2016). Googling Environmental Issues: Web Search Queries as a Measurement of Public Attention on Environmental Issues. Internet Research, 26, 57-73.
  6. Sun, G. D., Wu, Y. C., Liu, S. X., Peng, T. Q., Zhu, J. J. H., & Liang, R. F. (2014). EvoRiver: Visual Analysis of Topic Coopetition on Social Media. IEEE Transactions on Visualization and Computer Graphics, 20, 1753-1762.
  7. Xu, P. P., Wu, Y. C., Wei, E. X., Peng, T. Q., Liu, S. X., Zhu, J. J. H., & Qu, H. M. (2013). Visual Analysis of Topic Competition on Social Media. IEEE Transactions on Visualization and Computer Graphics, 19, 2012-2021.

Audience Analysis

  1. Lee, S., & Peng, T. Q. (2023). Understanding audience behavior with digital traces: Past, present, and future. Digital Journalism.
  2. Xu, Y., & Peng, T. Q. (2023). Ecological Constraints on Audience Size in the Digital Media System: Evidence From the Longitudinal Tracking Data From 2019 to 2022. Human Communication Research.
  3. Zhou, Y. X., Peng, T. Q., & Zhu, J. J. H. (2023). Will time matter with cognitive load and retention in online news consumption? Digital Journalism, 11(1), 181-202.
  4. Peng, T. Q., Zhou, Y., & Zhu, J. J. H. (2020). From filled to empty time intervals: Quantifying online behaviors with digital traces. Communication Methods and Measures, 14(4), 219-238.
  5. Peng, T. Q., & Zhu, J. J. H. (2020). Mobile phone use as sequential processes: From discrete behaviors to sessions of behaviors and trajectories of sessions. Journal of Computer-Mediated Communication, 25(2), 129-146.
  6. Lu, J. H., Xie, X., Lan, J., Peng, T. Q., Chen, W., & Wu, Y. C. (2019). BeXplorer: Visual analytics of dynamic interplay between behaviors in MMORPGs. Visual Informatics, 3, 87-101.
  7. Zhu, J. J. H., Chen, H. X., Peng, T. Q., Liu, X. F, & Dai, H. X. (2018). How to measure sessions of mobile device use? Quantification, Evaluation, and Applications. Mobile Media & Communication, 6(2), 215-232.

Production, Diffusion, and Consumption of Online Information

  1. Yin, J., Jia, H., Zhou, B., Tang, T., Ying, L., Ye, S., Peng, T. Q., & Wu, Y. C. (2025). Blowing seeds across gardens: Visualizing implicit propagation of cross-platform social media posts. IEEE Transactions on Visualization and Computer Graphics.
  2. Lee, S., Choung, H., Peng, T. Q., Lapinski, M. K., Jang, Y., & Turner, M. M. (2024). Believe it or not: A network analysis investigating how individuals embrace false and true statements during COVID-19. Communication Monographs.
  3. Zhang, Q., Liang, H., Peng, T. Q., & Zhu, J. J. H. (2023). The effect of affordance on deliberation when retweeting: From the perspective of expression effect. Computers in Human Behavior.
  4. Yang, Y., Lin, C. A., Peng, T. Q., & Pierre, L. (2023). #MeToo: Intersecting gender, race, user identity, social judgment and social support. The Journal of Social Media in Society, 12(1), 348-370.
  5. Zhang, L., Li, Y. N., Peng, T. Q., & Wu, Y. (2022). Dynamics of the social construction of knowledge: An empirical study of Zhihu in China. EPJ Data Science, 11, 35.
  6. Zhang, L., Zheng, L., & Peng, T. Q. (2021). Examining familial role in mobile news consumption as a sequential process. Telematics and Informatics, 56, 101502.
  7. Sun, G. D., Tang, T., Peng, T. Q., Liang, R. H., & Wu, Y. C. (2018). SocialWave: Visual analysis of spatio-temporal diffusion of information on social media. ACM Transactions on Intelligent Systems and Technology, 9(2), Article 15.
  8. Wang, X. H., Chen, L., Shi, J. Y., & Peng, T. Q. (2019). What makes cancer information viral on social media? Computers in Human Behavior, 93, 149-156.
  9. Cheng, L., Wang, X. H., & Peng, T. Q. (2018). Nature and diffusion of gynecologic cancer-related misinformation on social media. Journal of Medical Internet Research, 20, e11515.
  10. Zhang, L., Zheng, L., & Peng, T. Q. (2017). Structurally embedded news consumption on mobile news applications. Information Processing & Management, 53, 1242-1253.
  11. Zhang, L., & Peng, T. Q. (2015). Breadth, Depth and Speed: Diffusion of Advertising Messages on Microblogging Sites. Internet Research, 25, 453-470.
  12. Zhang, L., Peng, T. Q., Zhang, Y. P., Wang, X. H., & Zhu, J. J. H. (2014). Content or Context: Which Matters More in Information Processing on Microblogging Sites? Computers in Human Behavior, 31, 242-249.

Connection and Communication on Social Media

  1. Lee, S., Cho, M. S., & Peng, T. Q. (2024). Understanding Sentiment towards Racial Unrest through Temporal and Geographic Lenses: A Multilevel-Analysis across Metropolitan Areas in the United States. Frontiers in Communication.
  2. Tan, Y., Peng. T. Q., & Chiang, Y. S. (2022). The Facebook networking among political candidates and its outcomes: An empirical study of the 2016 legislative election in Taiwan. Journal of Information Society. [in Chinese]
  3. Robertson, C., Dutton, W., Ackland, R., & Peng, T. Q. (2019). The democratic role of social media in political debates: The use of Twitter in the first televised US presidential debate of 2016. Journal of Information Technology & Politics,16, 105-118.
  4. Paulus, F. M., Müller-Pinzler, L., Meshi, D., Peng, T. Q., Martinez Mateo, M., & Krach, S. (2019). The politics of embarrassment: Considerations on how norm-transgressions of political representatives shape nation-wide communication of emotions on social media. Frontiers in Communication
  5. Zheng, H., Aung, H. H., Erdt, M., Peng, T. Q., Sesagiri Raamkumar, A., & Theng, Y. L. (2019). Social media presence of scholarly journals. Journal of the Association for Information Science and Technology, 70, 256-270.
  6. Shi, J. Y., Wang, X. H., Peng, T. Q., & Chen, L. (2017). Understanding interactions in virtual HIV communities; A Social Network Analysis Approach. AIDS Care, 29, 239-243.
  7. Xu, X. X., Yang, X. D., Lu, J. H., Lan, J., Peng, T. Q., Wu, Y. C., & Chen, W. (2017). Examining the Effects of Network Externalities, Density, and Closure on In-game Currency Price in Online Games. Internet Research, 27, 924-941.
  8. Wang, X. H., Shi, J. Y., Chen, L., & Peng, T. Q. (2016). An Examination of Users’ Influence in Online HIV/AIDS Communities. Cyberpsychology, Behavior, and Social Networking, 19, 314-320.
  9. Wang, X. T., Liu, S. X., Chen, Y., Peng, T. Q., Su, J., Yang, J., & Guo, B. N. (2016). How Ideas Flow across Multiple Social Groups. Proceedings of the 2016 IEEE Visual Analytics Science and Technology (VAST 2016), Baltimore, Maryland. DOI: 10.1109/VAST.2016.7883511.
  10. Peng, T. Q., Liu, M. C., Wu, Y. C., & Liu, S. X. (2016). Follower-followee Network, Communication Networks and Vote Agreement of U.S. Members of Congress. Communication Research, 43, 996-1024.

Public Health and Health Communication

  1. Turner, M. M., Lim, J. I., Jang, Y., Heo, R. J., Ye, Q., Kim, M., Lapinski, M. K., & Peng, T. Q. (2024). Do COVID-19 related primary emotions affect risk perceptions, efficacy beliefs, and information seeking and behavior? Examining emotions as audience segments. Frontiers in Communication.
  2. Yoon, H., Jang, Y., Lapinski, M., Turner, M. M., Peng, T. Q., & Lee, S. (2024). The role of collective group orientation and social norms on physical distancing behaviors for disease prevention. Health Communication.
  3. Lee, S., Ma, S. Y, Meng, J., Zhuang, J., & Peng, T. Q. (2022). Detecting sentiment toward emerging infectious disease on social media: A validity evaluation of dictionary-based sentiment analysis. International Journal of Environmental Research and Public Health, 19(11), 6759.
  4. Chung, M., Jang, Y., Lapinski, M. Kerr, J., Zhao, J. H., Shupp, R., & Peng, T. Q. (2022). I do, therefore I think it is normal: The causal effects of behavior on descriptive norm formation and evolution. Social Influence, 17(1), 17-35.
  5. Anderson, J., Lapinski, M., Turner, M., Peng, T. Q., & Schmaelzle, R. (2022). Speaking of values: Value-expressive communication and exercise intentions. Health Communication, 37(10), 1285-1294.
  6. Lee, S., Peng, T. Q., Lapinski, M., Turner, M., Jang, Y., & Schaaf, A. (2021). Too stringent or too lenient: Antecedents and consequences of perceived stringency of COVID-19 policies in the United States. Health Policy OPEN, 2, 100047.
  7. Zhang, Y., Cao, B. L., Wang, Y. F., Peng, T. Q., & Wang, X. H. (2020). When public health research meets social media: Knowledge mapping from 2000 to 2018. Journal of Medical Internet Research, 22(8), e17582.
  8. Zhuang, J., Peng, T. Q., Tang, J. L., & Wu, Y. C. (2020). Mixed and blended emotional reactions to 2014 Ebola outbreak. Journal of Global Health, 10, 010304.
  9. Shi, J. Y., Wang, X. H., Peng, T. Q., & Chen, L. (2019). Cancer prevention messages on Chinese social media: A content analysis grounded in the extended parallel process model and attribution theory. International Journal of Communication, 13, 1959-1976.
  10. Guan, L., Peng, T. Q., & Zhu, J. J. H. (2019). Who is tracking health on mobile devices: Behavioral logfile analysis in Hong Kong. JMIR mHealth and uHealth, 7(5): e13679.
  11. Dearing, J. W., Kee, K. F., & Peng, T. Q. (2017). Historical roots of dissemination and implementation science. In R. C. Brownson, G. A. Colditz, & E. K. Proctor (eds.), Dissemination and implementation research in health: translating science to practice (2nd ed., pp. 47-61). New York, NY: Oxford University Press.
  12. Jiang, L. C., Wang, Z. Z., Peng, T. Q., & Zhu, J. J. H. (2015). The Divided Communities of Shared Concerns: Mapping the Intellectual Structure of e-Health Research in Social Science Journals. International Journal of Medical Informatics, 84, 24-35.

Science of Science

  1. Wang, Y. F., Peng, T. Q., Lu, H. H., Wang, H. R., Xie, X., Qu, H. M., & Wu, Y. C. (2022). Seek for success: A visualization approach for understanding the dynamics of academic careers. IEEE Transactions on Visualization and Computer Graphics, 28(1), 475-485.
  2. Peng, T. Q. (2015). Assortative Mixing, Preferential Attachment and Triadic Closure: A Longitudinal Study of Tie-Generative Mechanisms in Journal Citation Networks. Journal of Informetrics, 9, 250-262.
  3. Peng, T. Q., & Wang, Z. Z. (2013). Network Closure, Brokerage, and Structural Influence of Journals: A Longitudinal Study of Journal Citation Network in Internet Research (2000-2010). Scientometrics, 97, 675-693.
  4. Peng, T. Q., Zhang, L., Zhong, Z. J., & Zhu, J. J. H. (2013). Mapping the Landscape of Internet Studies: Text Mining of Social Science Journal Articles 2000-2009. New Media & Society, 15, 644-664.
  5. Peng, T. Q., & Zhu, J. J. H. (2012). Where You Publish Matters Most: A Multilevel Analysis of Factors Affecting Citations of Internet Studies. Journal of the American Society for Information Science and Technology, 63, 1789-1803.

Adoption, Use, and Impacts of Web 1.0

  1. Heo, R., & Peng, T. Q. (2024). Revisiting the Relationship Between Internet Access and Civic Engagement: A Multilevel Analysis of Between-Country Differences and Within-Country Change. International Journal of Communication, 18, 3037-3059.
  2. Danowski, J., van Klyton, A., Peng, T. Q., Ma, S., Nkakleu, R., & Biboum, A. D. (2022). Information and communications technology development, interorganizational networks, and public sector corruption in Africa. Quality & Quantity.
  3. Zhu, Q. F., Skoric, M., & Peng, T. Q. (2018). Citizens’ use of the Internet and public service delivery: A longitudinal study of the first-level administrative divisions in China (1997-2014). International Journal of Public Administration in the Digital Age (IJPADA), 5(3), 32-42.
  4. Peng, T. Q., Zhu, J. J. H., Tong, J. J., & Jiang, S. J. (2012). Predicting Internet Nonusers’ Adoption Intention and Adoption Behavior: A Panel Study of Theory of Planned Behavior. Information, Communication & Society, 15, 1236-1257.
  5. Peng, T. Q., & Zhu, J. J. H. (2011). A Game of Win-Win or Win-Lose? —- A Revisit to the Internet’s Influence on Use of Traditional Media and Sociability. New Media & Society, 13, 568-586.
  6. Peng, T. Q., & Zhu, J. J. H. (2011). Sophistication of Internet Usage (SIU) and Its Attitudinal Antecedents: An Empirical Study in Hong Kong. Computers in Human Behavior, 27, 421-431.
  7. Peng, T. Q., & Zhu, J. J. H. (2010). Youth and the Internet in East Asia. Journal of Youth Studies, 13, 13-30.
  8. Peng, T. Q., & Zhu, J. J. H. (2008). Cohort Trends in Perceived Internet Influence on Political, Efficacy in Hong Kong. Cyberpsychology & Behavior, 11, 75-79.